Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Autophagy ; : 1-34, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38442890

RESUMO

Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.Abbreviation: 3-MA:3-methyladenine; 4HNE: 4-hydroxynonenal; ACD: accidentalcell death; ADF: autophagy-dependentferroptosis; ARE: antioxidant response element; BH2:dihydrobiopterin; BH4: tetrahydrobiopterin; BMDMs: bonemarrow-derived macrophages; CMA: chaperone-mediated autophagy; CQ:chloroquine; DAMPs: danger/damage-associated molecular patterns; EMT,epithelial-mesenchymal transition; EPR: electronparamagnetic resonance; ER, endoplasmic reticulum; FRET: Försterresonance energy transfer; GFP: green fluorescent protein;GSH: glutathione;IF: immunofluorescence; IHC: immunohistochemistry; IOP, intraocularpressure; IRI: ischemia-reperfusion injury; LAA: linoleamide alkyne;MDA: malondialdehyde; PGSK: Phen Green™ SK;RCD: regulatedcell death; PUFAs: polyunsaturated fatty acids; RFP: red fluorescentprotein;ROS: reactive oxygen species; TBA: thiobarbituricacid; TBARS: thiobarbituric acid reactive substances; TEM:transmission electron microscopy.

2.
Sci Rep ; 14(1): 3200, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331993

RESUMO

In the Drosophila larval salivary gland, developmentally programmed fusions between lysosomes and secretory granules (SGs) and their subsequent acidification promote the maturation of SGs that are secreted shortly before puparium formation. Subsequently, ongoing fusions between non-secreted SGs and lysosomes give rise to degradative crinosomes, where the superfluous secretory material is degraded. Lysosomal fusions control both the quality and quantity of SGs, however, its molecular mechanism is incompletely characterized. Here we identify the R-SNARE Ykt6 as a novel regulator of crinosome formation, but not the acidification of maturing SGs. We show that Ykt6 localizes to Lamp1+ carrier vesicles, and forms a SNARE complex with Syntaxin 13 and Snap29 to mediate fusion with SGs. These Lamp1 carriers represent a distinct vesicle population that are functionally different from canonical Arl8+, Cathepsin L+ lysosomes, which also fuse with maturing SGs but are controlled by another SNARE complex composed of Syntaxin 13, Snap29 and Vamp7. Ykt6- and Vamp7-mediated vesicle fusions also determine the fate of SGs, as loss of either of these SNAREs prevents crinosomes from acquiring endosomal PI3P. Our results highlight that fusion events between SGs and different lysosome-related vesicle populations are critical for fine regulation of the maturation and crinophagic degradation of SGs.


Assuntos
Proteínas SNARE , Vesículas Secretórias , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas Qa-SNARE/metabolismo , Vesículas Secretórias/metabolismo , Fusão de Membrana/fisiologia , Lisossomos/metabolismo
3.
Autophagy ; : 1-12, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38411137

RESUMO

The autophagosomal SNARE STX17 (syntaxin 17) promotes lysosomal fusion and degradation, but its autophagosomal recruitment is incompletely understood. Notably, PtdIns4P is generated on autophagosomes and promotes fusion through an unknown mechanism. Here we show that soluble recombinant STX17 is spontaneously recruited to negatively charged liposomes and adding PtdIns4P to liposomes containing neutral lipids is sufficient for its recruitment. Consistently, STX17 colocalizes with PtdIns4P-positive autophagosomes in cells, and specific inhibition of PtdIns4P synthesis on autophagosomes prevents its loading. Molecular dynamics simulations indicate that C-terminal positively charged amino acids establish contact with membrane bilayers containing negatively charged PtdIns4P. Accordingly, Ala substitution of Lys and Arg residues in the C terminus of STX17 abolishes membrane binding and impairs its autophagosomal recruitment. Finally, only wild type but not Ala substituted STX17 expression rescues the autophagosome-lysosome fusion defect of STX17 loss-of-function cells. We thus identify a key step of autophagosome maturation that promotes lysosomal fusion.Abbreviations: Cardiolipin: 1',3'-bis[1-palmitoyl-2-oleoyl-sn-glycero-3-phospho]-glycerol; DMSO: dimethyl sulfoxide; GST: glutathione S-transferase; GUV: giant unilamellar vesicles; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PA: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate; PC/POPC: 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine; PG: 1-palmitoyl-2-linoleoyl-sn-glycero-3-phospho-(1'-rac-glycerol); PI: L-α-phosphatidylinositol; PI4K2A: phosphatidylinositol 4-kinase type 2 alpha; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; POPE/PE: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine; PS: 1-stearoyl-2-linoleoyl-sn-glycero-3-phospho-L-serine; PtdIns(3,5)P2: 1,2-dioleoyl-sn-glycero-3-phospho-(1"-myo-inositol-3',5'-bisphosphate); PtdIns3P: 1,2- dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol-3'-phosphate); PtdIns4P: 1,2-dioleoyl-sn-glycero-3-phospho-(1"-myo-inositol-4'-phosphate); SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; STX17: syntaxin 17.

4.
Proc Natl Acad Sci U S A ; 121(10): e2310740121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408233

RESUMO

Autophagy is essential for the turnover of damaged organelles and long-lived proteins. It is responsible for many biological processes such as maintaining brain functions and aging. Impaired autophagy is often linked to neurodevelopmental and neurodegenerative diseases in humans. However, the role of autophagy in neuronal pruning during development remains poorly understood. Here, we report that autophagy regulates dendrite-specific pruning of ddaC sensory neurons in parallel to local caspase activation. Impaired autophagy causes the formation of ubiquitinated protein aggregates in ddaC neurons, dependent on the autophagic receptor Ref(2)P. Furthermore, the metabolic regulator AMP-activated protein kinase and the insulin-target of rapamycin pathway act upstream to regulate autophagy during dendrite pruning. Importantly, autophagy is required to activate the transcription factor CncC (Cap "n" collar isoform C), thereby promoting dendrite pruning. Conversely, CncC also indirectly affects autophagic activity via proteasomal degradation, as impaired CncC results in the inhibition of autophagy through sequestration of Atg8a into ubiquitinated protein aggregates. Thus, this study demonstrates the important role of autophagy in activating CncC prior to dendrite pruning, and further reveals an interplay between autophagy and CncC in neuronal pruning.


Assuntos
Proteínas de Drosophila , Drosophila , Compostos de Amônio Quaternário , Animais , Humanos , Autofagia/fisiologia , Dendritos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Plasticidade Neuronal , Proteínas Ubiquitinadas/metabolismo
5.
Fluids Barriers CNS ; 21(1): 6, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212833

RESUMO

BACKGROUND: The brain extracellular fluid (ECF), composed of secreted neurotransmitters, metabolites, peptides, and proteins, may reflect brain processes. Analysis of brain ECF may provide new potential markers for synaptic activity or brain damage and reveal additional information on pathological alterations. Epileptic seizure induction is an acute and harsh intervention in brain functions, and it can activate extra- and intracellular proteases, which implies an altered brain secretome. Thus, we applied a 4-aminopyridine (4-AP) epilepsy model to study the hippocampal ECF peptidome alterations upon treatment in rats. METHODS: We performed in vivo microdialysis in the hippocampus for 3-3 h of control and 4-AP treatment phase in parallel with electrophysiology measurement. Then, we analyzed the microdialysate peptidome of control and treated samples from the same subject by liquid chromatography-coupled tandem mass spectrometry. We analyzed electrophysiological and peptidomic alterations upon epileptic seizure induction by two-tailed, paired t-test. RESULTS: We detected 2540 peptides in microdialysate samples by mass spectrometry analysis; and 866 peptides-derived from 229 proteins-were found in more than half of the samples. In addition, the abundance of 322 peptides significantly altered upon epileptic seizure induction. Several proteins of significantly altered peptides are neuropeptides (Chgb) or have synapse- or brain-related functions such as the regulation of synaptic vesicle cycle (Atp6v1a, Napa), astrocyte morphology (Vim), and glutamate homeostasis (Slc3a2). CONCLUSIONS: We have detected several consequences of epileptic seizures at the peptidomic level, as altered peptide abundances of proteins that regulate epilepsy-related cellular processes. Thus, our results indicate that analyzing brain ECF by in vivo microdialysis and omics techniques is useful for monitoring brain processes, and it can be an alternative method in the discovery and analysis of CNS disease markers besides peripheral fluid analysis.


Assuntos
Epilepsia , Espaço Extracelular , Ratos , Animais , Espaço Extracelular/metabolismo , Uretana/metabolismo , Convulsões/induzido quimicamente , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Epilepsia/patologia , 4-Aminopiridina/metabolismo , 4-Aminopiridina/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Amidas/metabolismo , Hipocampo/metabolismo
6.
Front Cell Dev Biol ; 11: 1281487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020911

RESUMO

Glutamate dehydrogenases are enzymes that take part in both amino acid and energy metabolism. Their role is clear in many biological processes, from neuronal function to cancer development. The putative testis-specific Drosophila glutamate dehydrogenase, Bb8, is required for male fertility and the development of mitochondrial derivatives in spermatids. Testis-specific genes are less conserved and could gain new functions, thus raising a question whether Bb8 has retained its original enzymatic activity. We show that while Bb8 displays glutamate dehydrogenase activity, there are significant functional differences between the housekeeping Gdh and the testis-specific Bb8. Both human GLUD1 and GLUD2 can rescue the bb8 ms mutant phenotype, with superior performance by GLUD2. We also tested the role of three conserved amino acids observed in both Bb8 and GLUD2 in Gdh mutants, which showed their importance in the glutamate dehydrogenase function. The findings of our study indicate that Drosophila Bb8 and human GLUD2 could be novel examples of convergent molecular evolution. Furthermore, we investigated the importance of glutamate levels in mitochondrial homeostasis during spermatogenesis by ectopic expression of the mitochondrial glutamate transporter Aralar1, which caused mitochondrial abnormalities in fly spermatids. The data presented in our study offer evidence supporting the significant involvement of glutamate metabolism in sperm development.

7.
Autophagy ; 19(11): 3024-3025, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37561045

RESUMO

In the nervous system, dead cell-derived material arising from injuries and neurodegeneration is normally removed by the phagocytic activity of macrophages or glia. Failure in this process can lead to excessive inflammation and secondary neurodegeneration. During phagocytosis, engulfed material is captured into phagosomes. Maturation and subsequent fusion of these vesicles with lysosomes may utilize components of the macroautophagy pathway that has been referred to as LC3-associated phagocytosis or LAP for short.

8.
Mol Biol Cell ; 34(9): ar87, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314856

RESUMO

Proper balance of exocytosis and endocytosis is important for the maintenance of plasma membrane lipid and protein homeostasis. This is especially critical in human podocytes and the podocyte-like Drosophila nephrocytes that both use a delicate diaphragm system with evolutionarily conserved components for ultrafiltration. Here, we show that the sorting nexin 25 homologue Snazarus (Snz) binds to Rab11 and localizes to Rab11-positive recycling endosomes in Drosophila nephrocytes, unlike in fat cells where it is present in plasma membrane/lipid droplet/endoplasmic reticulum contact sites. Loss of Snz leads to redistribution of Rab11 vesicles from the cell periphery and increases endocytic activity in nephrocytes. These changes are accompanied by defects in diaphragm protein distribution that resemble those seen in Rab11 gain-of-function cells. Of note, co-overexpression of Snz rescues diaphragm defects in Rab11 overexpressing cells, whereas snz knockdown in Rab11 overexpressing nephrocytes or simultaneous knockdown of snz and tbc1d8b encoding a Rab11 GTPase-activating protein (GAP) leads to massive expansion of the lacunar system that contains mislocalized diaphragm components: Sns and Pyd/ZO-1. We find that loss of Snz enhances while its overexpression impairs secretion, which, together with genetic epistasis analyses, suggest that Snz counteracts Rab11 to maintain the diaphragm via setting the proper balance of exocytosis and endocytosis.


Assuntos
Proteínas de Drosophila , Animais , Humanos , Proteínas de Drosophila/metabolismo , Nexinas de Classificação/metabolismo , Diafragma/metabolismo , Ultrafiltração , Drosophila/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Endocitose , Endossomos/metabolismo
9.
Front Mol Biosci ; 10: 1195010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228584

RESUMO

Ductins are a family of homologous and structurally similar membrane proteins with 2 or 4 trans-membrane alpha-helices. The active forms of the Ductins are membranous ring- or star-shaped oligomeric assemblies and they provide various pore, channel, gap-junction functions, assist in membrane fusion processes and also serve as the rotor c-ring domain of V-and F-ATPases. All functions of the Ductins have been reported to be sensitive to the presence of certain divalent metal cations (Me2+), most frequently Cu2+ or Ca2+ ions, for most of the better known members of the family, and the mechanism of this effect is not yet known. Given that we have earlier found a prominent Me2+ binding site in a well-characterised Ductin protein, we hypothesise that certain divalent cations can structurally modulate the various functions of Ductin assemblies via affecting their stability by reversible non-covalent binding to them. A fine control of the stability of the assembly ranging from separated monomers through a loosely/weakly to tightly/strongly assembled ring might render precise regulation of Ductin functions possible. The putative role of direct binding of Me2+ to the c-ring subunit of active ATP hydrolase in autophagy and the mechanism of Ca2+-dependent formation of the mitochondrial permeability transition pore are also discussed.

10.
Nat Commun ; 14(1): 3077, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248218

RESUMO

Glial engulfment of neuron-derived debris after trauma, during development, and in neurodegenerative diseases supports nervous system functions. However, mechanisms governing the efficiency of debris degradation in glia have remained largely unexplored. Here we show that LC3-associated phagocytosis (LAP), an engulfment pathway assisted by certain autophagy factors, promotes glial phagosome maturation in the Drosophila wing nerve. A LAP-specific subset of autophagy-related genes is required in glia for axon debris clearance, encoding members of the Atg8a (LC3) conjugation system and the Vps34 lipid kinase complex including UVRAG and Rubicon. Phagosomal Rubicon and Atg16 WD40 domain-dependent conjugation of Atg8a mediate proper breakdown of internalized axon fragments, and Rubicon overexpression in glia accelerates debris elimination. Finally, LAP promotes survival following traumatic brain injury. Our results reveal a role of glial LAP in the clearance of neuronal debris in vivo, with potential implications for the recovery of the injured nervous system.


Assuntos
Drosophila , Proteínas Associadas aos Microtúbulos , Animais , Drosophila/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fagocitose/genética , Autofagia/genética , Axônios/metabolismo , Neuroglia/metabolismo
11.
Cell Mol Neurobiol ; 43(7): 3099-3113, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37219664

RESUMO

STEP (STriatal-Enriched Protein Tyrosine Phosphatase) is a brain-specific phosphatase that plays an important role in controlling signaling molecules involved in neuronal activity and synaptic development. The striatum is the main location of the STEP enzyme. An imbalance in STEP61 activity is a risk factor for Alzheimer's disease (AD). It can contribute to the development of numerous neuropsychiatric diseases, including Parkinson's disease (PD), schizophrenia, fragile X syndrome (FXS), Huntington's disease (HD), alcoholism, cerebral ischemia, and stress-related diseases. The molecular structure, chemistry, and molecular mechanisms associated with STEP61's two major substrates, Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAr) and N-methyl-D-aspartate receptors (NMDARs), are crucial in understanding the relationship between STEP61 and associated illnesses. STEP's interactions with its substrate proteins can alter the pathways of long-term potentiation and long-term depression. Therefore, understanding the role of STEP61 in neurological illnesses, particularly Alzheimer's disease-associated dementia, can provide valuable insights for possible therapeutic interventions. This review provides valuable insights into the molecular structure, chemistry, and molecular mechanisms associated with STEP61. This brain-specific phosphatase controls signaling molecules involved in neuronal activity and synaptic development. This review can aid researchers in gaining deep insights into the complex functions of STEP61.


Assuntos
Doença de Alzheimer , Humanos , Transdução de Sinais/fisiologia , Plasticidade Neuronal , Potenciação de Longa Duração , Monoéster Fosfórico Hidrolases/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
12.
J Cell Sci ; 136(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37092295

RESUMO

In specialized secretory cells that produce and release biologically active substances in a regulated fashion, tight control of both the quantity and quality of secretory material is of paramount importance. During crinophagy, abnormal, excess or obsolete secretory granules directly fuse with lysosomes to yield crinosomes, in which the delivered secretory material is degraded. Crinophagy maintains the proper intracellular pool of secretory granules, and it is enhanced when secretory material accumulates because of compromised secretion. Recent studies highlight that it can even degrade newly formed, nascent secretory granules that shed from the trans-Golgi network. This implies that crinophagy provides a quality control checkpoint acting at the formation of secretory vesicles, and this degradation mechanism might survey secretory granules throughout their maturation. Of note, a plethora of human disorders is associated with defective lysosomal clearance of secretory material via crinophagy or similar pathways, including macro- or micro-autophagic degradation of secretory granules (referred to here as macro- and micro-secretophagy, respectively). In our Review, we summarize key recent advances in this field and discuss potential links with disease.


Assuntos
Lisossomos , Via Secretória , Humanos , Lisossomos/metabolismo , Autofagia , Rede trans-Golgi/metabolismo , Vesículas Secretórias/metabolismo
13.
J Cell Biol ; 222(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37052884

RESUMO

Jipa and Juhász preview results from the lab of Tao Wang (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202208147) which show a surprising antagonism between two branches of the unfolded protein response that dictates disease progression in a model of autosomal dominant retinitis pigmentosa.


Assuntos
Retinite Pigmentosa , Resposta a Proteínas não Dobradas , Retinite Pigmentosa/patologia , Animais , Progressão da Doença
14.
Mol Neurobiol ; 60(6): 3158-3174, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36808604

RESUMO

Declining cerebral blood flow leads to chronic cerebral hypoperfusion which can induce neurodegenerative disorders, such as vascular dementia. The reduced energy supply of the brain impairs mitochondrial functions that could trigger further damaging cellular processes. We carried out stepwise bilateral common carotid occlusions on rats and investigated long-term mitochondrial, mitochondria-associated membrane (MAM), and cerebrospinal fluid (CSF) proteome changes. Samples were studied by gel-based and mass spectrometry-based proteomic analyses. We found 19, 35, and 12 significantly altered proteins in the mitochondria, MAM, and CSF, respectively. Most of the changed proteins were involved in protein turnover and import in all three sample types. We confirmed decreased levels of proteins involved in protein folding and amino acid catabolism, such as P4hb and Hibadh in the mitochondria by western blot. We detected reduced levels of several components of protein synthesis and degradation in the CSF as well as in the subcellular fractions, implying that hypoperfusion-induced altered protein turnover of brain tissue can be detected in the CSF by proteomic analysis.


Assuntos
Isquemia Encefálica , Proteômica , Ratos , Animais , Proteostase , Mitocôndrias/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo
15.
Cell Mol Life Sci ; 80(1): 24, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36600084

RESUMO

At the onset of Drosophila metamorphosis, plenty of secretory glue granules are released from salivary gland cells and the glue is deposited on the ventral side of the forming (pre)pupa to attach it to a dry surface. Prior to this, a poorly understood maturation process takes place during which secretory granules gradually grow via homotypic fusions, and their contents are reorganized. Here we show that the small GTPase Rab26 localizes to immature (smaller, non-acidic) glue granules and its presence prevents vesicle acidification. Rab26 mutation accelerates the maturation, acidification and release of these secretory vesicles as well as the lysosomal breakdown (crinophagy) of residual, non-released glue granules. Strikingly, loss of Mon1, an activator of the late endosomal and lysosomal fusion factor Rab7, results in Rab26 remaining associated even with the large glue granules and a concomitant defect in glue release, similar to the effects of Rab26 overexpression. Our data thus identify Rab26 as a key regulator of secretory vesicle maturation that promotes early steps (vesicle growth) and inhibits later steps (lysosomal transport, acidification, content reorganization, release, and breakdown), which is counteracted by Mon1.


Assuntos
Drosophila , Vesículas Secretórias , Proteínas rab de Ligação ao GTP , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Lisossomos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Glândulas Salivares/metabolismo , Vesículas Secretórias/metabolismo
16.
Brain Behav Immun Health ; 28: 100594, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36713475

RESUMO

Neuroinflammation induced by peripheral infections leads to various neuropsychiatric symptoms both in humans and laboratory animals, e.g., to the manifestation of sickness behavior that resembles some features of clinical depression. However, in addition to depression-like behavior, there are other symptoms of acute systemic inflammation that can be associated with the impairment of prefrontal cortex (PFC)-regulated cognitive functions. Thus, we investigated the electrophysiological and proteomic alterations of the PFC using brain slices and the lipopolysaccharide (LPS) model of acute peripheral infection in male mice. Based on the gene expression differences of the coreceptor (Il1rap) of interleukin-1 beta (IL-1ß) between neuron types in our previous single-cell sequencing dataset, we first compared the electrophysiological effects of IL-1ß on PFC pyramidal cells and interneurons. We found that pyramidal cells are more responsive to IL-1ß, as could be presumed from our transcriptomic data. To examine the possible circuit-level correlates of the cellular changes, frontal electroencephalographic (EEG) activity and fronto-occipital functional connectivity were analyzed in LPS-treated mice and significant changes were found in the fronto-occipital EEG correlation and coherence in the delta and high-gamma frequency bands. The upregulation of the prefrontal IL-1 system (IL-1ß and its receptor) after LPS treatment was revealed by immunoassays simultaneously with the observed EEG changes. Furthermore, we investigated the LPS-induced alterations of the synaptic proteome in the PFC using 2-D differential gel electrophoresis and mass spectrometry and found 48 altered proteins mainly related to cellular signaling, cytoskeletal organization, and carbohydrate/energy metabolism. Thus, our results indicate remarkable electrophysiological and molecular changes in the PFC related to acute systemic inflammation that may explain some of the concomitant behavioral and physiological symptoms.

17.
Traffic ; 23(12): 568-586, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36353974

RESUMO

Both constitutive and regulated secretion require cell organelles that are able to store and release the secretory cargo. During development, the larval salivary gland of Drosophila initially produces high amount of glue-containing small immature secretory granules, which then fuse with each other and reach their normal 3-3.5 µm in size. Following the burst of secretion, obsolete glue granules directly fuse with late endosomes or lysosomes by a process called crinophagy, which leads to fast degradation and recycling of the secretory cargo. However, hindering of endosome-to-TGN retrograde transport in these cells causes abnormally small glue granules which are not able to fuse with each other. Here, we show that loss of function of the SNARE genes Syntaxin 16 (Syx16) and Synaptobrevin (Syb), the small GTPase Rab6 and the GARP tethering complex members Vps53 and Scattered (Vps54) all involved in retrograde transport cause intense early degradation of immature glue granules via crinophagy independently of the developmental program. Moreover, silencing of these genes also provokes secretory failure and accelerated crinophagy during larval development. Our results provide a better understanding of the relations among secretion, secretory granule maturation and degradation and paves the way for further investigation of these connections in other metazoans.


Assuntos
Drosophila , Vesículas Secretórias , Animais , Larva , Vesículas Secretórias/metabolismo , Complexo de Golgi/metabolismo , Glândulas Salivares/metabolismo
18.
Nat Commun ; 13(1): 6715, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344570

RESUMO

Neuronal plasticity has been shown to be causally linked to coincidence detection through dendritic spikes (dSpikes). We demonstrate the existence of SPW-R-associated, branch-specific, local dSpikes and their computational role in basal dendrites of hippocampal PV+ interneurons in awake animals. To measure the entire dendritic arbor of long thin dendrites during SPW-Rs, we used fast 3D acousto-optical imaging through an eccentric deep-brain adapter and ipsilateral local field potential recording. The regenerative calcium spike started at variable, NMDA-AMPA-dependent, hot spots and propagated in both direction with a high amplitude beyond a critical distance threshold (~150 µm) involving voltage-gated calcium channels. A supralinear dendritic summation emerged during SPW-R doublets when two successive SPW-R events coincide within a short temporal window (~150 ms), e.g., during more complex association tasks, and generated large dSpikes with an about 2.5-3-fold amplitude increase which propagated down to the soma. Our results suggest that these doublet-associated dSpikes can work as a dendritic-level temporal and spatial coincidence detector during SPW-R-related network computation in awake mice.


Assuntos
Interneurônios , Parvalbuminas , Camundongos , Animais , Potenciais de Ação/fisiologia , Interneurônios/fisiologia , Dendritos/fisiologia , Neurônios/fisiologia , Hipocampo/fisiologia , Células Piramidais/fisiologia
19.
Eur J Cell Biol ; 101(4): 151279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36306596

RESUMO

Bulk production and release of glue containing secretory granules takes place in the larval salivary gland during Drosophila development in order to attach the metamorphosing animal to a dry surface. These granules undergo a maturation process to prepare glue for exocytosis, which includes homotypic fusions to increase the size of granules, vesicle acidification and ion uptake. The steroid hormone 20-hydroxyecdysone is known to be required for the first and last steps of this process: glue synthesis and secretion, respectively. Here we show that the B1 isoform of Ecdysone receptor (EcR), together with its binding partner Ultraspiracle, are also necessary for the maturation of glue granules by promoting their acidification via regulation of Vha55 expression, which encodes an essential subunit of the V-ATPase proton pump. This is antagonized by the EcR-A isoform, overexpression of which decreases EcR-B1 and Vha55 expression and glue granule acidification. Our data shed light on a previously unknown, ecdysone receptor isoform-specific regulation of glue granule maturation.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Larva , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Glândulas Salivares/metabolismo , Vesículas Secretórias/metabolismo
20.
Front Cell Dev Biol ; 10: 976882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299486

RESUMO

Autophagy is a conserved catabolic process in eukaryotic cells that degrades intracellular components in lysosomes, often in an organelle-specific selective manner (mitophagy, ERphagy, etc). Cells also use autophagy as a defense mechanism, eliminating intracellular pathogens via selective degradation known as xenophagy. Wolbachia pipientis is a Gram-negative intracellular bacterium, which is one of the most common parasites on Earth affecting approximately half of terrestrial arthropods. Interestingly, infection grants the host resistance against other pathogens and modulates lifespan, so this bacterium resembles an endosymbiont. Here we demonstrate that Drosophila somatic cells normally degrade a subset of these bacterial cells, and autophagy is required for selective elimination of Wolbachia upon antibiotic damage. In line with these, Wolbachia overpopulates in autophagy-compromised animals during aging while its presence fails to affect host lifespan unlike in case of control flies. The autophagic degradation of Wolbachia thus represents a novel antibacterial mechanism that controls the propagation of this unique bacterium, behaving both as parasite and endosymbiont at the same time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...